Suppose we have random variables X1,…,XkX_1,…,X_k. We say XiX_i and XjX_j are independent if, for all possible values vi,vjv_i,v_j, Pr[Xi=viandXj=vj]=Pr[Xi=vi]⋅Pr[Xj=vj]\mathrm{Pr}[X_i=v_i \mathrm{and} X_j=v_j]=\mathrm{Pr}[X_i=v_i]\cdot\mathrm{Pr}[X_j=v_j]
See Types of Independence
References: