Matrix exponential

Definition

eAtI+At+A2t22!+...=i=0Aitii!deAtdt=A[I+At+A2t22!+...]=AeAt\begin{eqnarray} e^{At} \triangleq I + At + A^2\frac{t^2}{2!} + ... = \sum_{i=0}^\infty A^i \frac{t^i}{i!} \\ \frac{de^{At}}{dt} = A [I + At + A^2 \frac{t^2}{2!} + ...] = Ae^{At} \end{eqnarray}

Properties

Notes

If AA is 1×11 \times 1 i.e. scalar, this becomes the power series, eat=k=0(at)kk!=1+at+a2t22!+...e^{at} = \sum_{k=0}^\infty \frac{(at)^k}{k!} = 1 + at + a^2\frac{t^2}{2!} + ... which matches a common definition of the exponential function


References

  1. https://crrl.poly.edu/6253/lectures/lect4.pdf
  2. https://en.wikipedia.org/wiki/Matrix_exponential
  3. https://en.wikipedia.org/wiki/Characterizations_of_the_exponential_function