Variance

Let XX be a (scalar) random variable taking value in some set ๐’ฎ\mathcal{S}. Then,

Var[X]=๐”ผ[(Xโˆ’๐”ผ[X])2]=๐”ผ[X2]โˆ’๐”ผ[X]2โ‰ค๐”ผ[X2]\mathrm{Var}[X]=\mathbb{E}[(X-\mathbb{E}[X])^2]=\mathbb{E}[X^2]-\mathbb{E}[X]^2 \leq \mathbb{E}[X^2]


Var[X+Y]=Var[X]+Var[Y]+2Cov[X,Y]\mathrm{Var}[X+Y]=\mathrm{Var}[X]+\mathrm{Var}[Y]+2\mathrm{Cov}[X,Y]

If XX and YY are independent, then Covariance Cov[X,Y]=0\mathrm{Cov}[X,Y]=0. (under this condition there is linearity of variance)


References:

  1. http://theanalysisofdata.com/probability/2_3.html
  2. https://www.kellogg.northwestern.edu/faculty/weber/decs-433/Notes_4_Random_variability.pdf
  3. https://cs229.stanford.edu/section/cs229-prob.pdf
  4. https://stats.stackexchange.com/questions/184998/the-linearity-of-variance

See also: Jensenโ€™s inequality