β-smoothness

A function ff is β\beta smooth if, for all 𝐱,𝐲\mathbf{x},\mathbf{y}: ||f(𝐱)f(𝐲)||2β||𝐱𝐲||2||\nabla f(\mathbf{x})-\nabla f(\mathbf{y})||_2 \leq \beta ||\mathbf{x}-\mathbf{y}||_2

For scalar valued function ff, equivalent to f(x)βf''(x) \leq \beta.


For scalar functions, a twice-differentiable function ff is α-strongly convex and β\beta-smooth if for all xx, αf(x)β\alpha \leq f''(x) \leq \beta


References:

  1. https://arxiv.org/pdf/1405.4980.pdf