A function ff is β\beta smooth if, for all 𝐱,𝐲\mathbf{x},\mathbf{y}: ||∇f(𝐱)−∇f(𝐲)||2≤β||𝐱−𝐲||2||\nabla f(\mathbf{x})-\nabla f(\mathbf{y})||_2 \leq \beta ||\mathbf{x}-\mathbf{y}||_2
For scalar valued function ff, equivalent to f″(x)≤βf''(x) \leq \beta.
For scalar functions, a twice-differentiable function ff is α-strongly convex and β\beta-smooth if for all xx, α≤f″(x)≤β\alpha \leq f''(x) \leq \beta
References: