Singular value decomposition

Without loss of generality, suppose that nβ‰₯dn \geq d. Any matrix π—βˆˆβ„nΓ—d\mathbf{X} \in \mathbb{R}^{n \times d} can be written in the form: $$\mathbf{X} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\sf T}$$ Pasted image 20231203201544.png

where π”βˆˆβ„nΓ—d\mathbf{U} \in \mathbb{R}^{n \times d}, πšΊβˆˆβ„dΓ—d\mathbf{\Sigma} \in \mathbb{R}^{d \times d}, π•βˆˆβ„dΓ—d\mathbf{V} \in \mathbb{R}^{d \times d}.

Denote the left singular vectors as columns in matrix 𝐔\mathbf{U} (nΓ—dn \times d), singular values Οƒ1,Οƒ2,…,Οƒdβˆ’1,Οƒd\sigma_1, \sigma_2, …, \sigma_{d-1}, \sigma_d on the diagonal of matrix 𝚺\mathbf{\Sigma} (dΓ—dd \times d), and right singular vectors as rows in matrix $\mathbf{V}^{\sf T}$ (dΓ—dd \times d).

The following are satisfied: $\mathbf{U}^{\sf T} \mathbf{U} = \mathbf{I}$, $\mathbf{V}^{\sf T} \mathbf{V} = \mathbf{I}$, and Οƒ1β‰₯Οƒ2β‰₯…σdβ‰₯0\sigma_1 \geq \sigma_2 \geq … \sigma_d \geq 0.

This is called the Singular Value Decomposition (SVD) of 𝐗\mathbf{X}.

Characteristics

#incomplete

Geometric interpretation of SVD

Given any matrix π€βˆˆβ„mΓ—n\mathbf{A} \in \mathbb{R}^{m \times n}, it defines a linear transformation f:ℝn↦ℝmwithf(𝐱)=𝐀𝐱f : \mathbb{R}^n \mapsto \mathbb{R}^m \qquad \textrm{with}\quad f(\mathbf{x}) = \mathbf{Ax}

SVD of 𝐀\mathbf{A} indicates linear transformation ff can be decomposed into a sequence of three operations $$\mathbf{Ax} = \mathbf{U} \cdot \mathbf{\Sigma} \cdot \mathbf{V}^{\sf T}\mathbf{x}$$ full transformation equals rotation rescaling rotation


β€œone of the most fundamental results in linear algebra”


See also: Spectral decomposition


References:

  1. https://www.chrismusco.com/amlds2023/notes/lecture11.html#Singular_Value_Decomposition
  2. Avrim Blum, John Hopcroft, and Ravindran Kannan, β€œ3.4 Singular Value Decomposition (SVD)” in Foundations of Data Science, 2018, pp. 45-47. https://www.cs.cornell.edu/jeh/book.pdf
  3. https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/book-chapter-4.pdf
  4. G. Strang, β€œ6.3 Singular Value Decomposition” inΒ Introduction to Linear Algebra, 4th ed., Wellesley, MA: Wellesley-Cambridge Press, 2009, pp. 367-376.
  5. https://www.sjsu.edu/faculty/guangliang.chen/Math253S20/lec5svd.pdf

#incomplete