Spectral decomposition

Symmetric matrices are always (orthogonally) diagonalizable.

That is, for any symmetric matrix 𝐀n×n\mathbf{A} \in \mathbb{R}^{n \times n}, there exists an orthogonal matrix 𝐐=[𝐪1...𝐪n]\mathbf{Q} = [\mathbf{q}_1...\mathbf{q}_n] and a diagonal matrix 𝚲=diag(λ1,,λn)\mathbf{\Lambda} = \mathrm{diag} (\lambda_1,…,\lambda_n), both real and square, such that $$\mathbf{A} = \mathbf{Q\Lambda Q}^{\sf T}$$ where λi\lambda_i’s are the eigenvalues of 𝐀\mathbf{A} and 𝐪i\mathbf{q}_i’s the corresponding eigenvectors (orthogonal to each other and with unit norm).

Such a factorization is called the eigendecomposition of 𝐀\mathbf{A}, also called the spectral decomposition of 𝐀\mathbf{A}.


For general rectangular matrices, there is Singular value decomposition.


References:

  1. https://www.sjsu.edu/faculty/guangliang.chen/Math253S20/lec5svd.pdf
  2. https://people.math.carleton.ca/~kcheung/math/notes/MATH1107/wk10/10_symmetric_matrices.html
  3. https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix